

RBWH_

EFAST: Splenorenal/LUQ

EFAST: (lung US m-mode) R lung

EFAST: (lung US m-mode) L lung

EFAST: Pelvic

Transfusion Medicine - Group and Antibody Screen Blood Group: O Rh(D) POSITIVE Antibody Screen: Negative

GENERAL COAGULATION INR Prothrombin Time APTT Fib (derived)

1.1

11

27

2.4

Specimen type		Blood	Urate	0.28	mmo1/L	(0.15 - 0.50)
Sample Appearance		Clear	Protein	62	g/L	(60 - 80)
Sodium	137	mmol/L (135 - 145)	Albumin	42	g/L	(35 - 50)
Potassium	4.3	mmol/L (3.5 - 5.2)	Globulin	20 L	g/L	(25 - 45)
Chloride	106	mmol/L (95 - 110)	Bilirubin	31 H	umo1/L	(< 20)
Bicarb.	26	mmo]/L (22 - 32)	Bili(Conj)	5 H	umo1/L	(< 4)
Anion Gap	5	mmol/L (4 - 13)	ALP	47	U/L	(30 - 110)
Glucose	5.1	mmol/L (3.0 - 7.8)	Gamma GT	11	U/L	(< 55)
Fasting RR	>	(3.0 - 6.0)	ALT	12	U/L	(< 45)
Urea	7.2	H mmol/L (2.1 - 7.1)	AST	12	U/L	(< 35)
Creatinine	76	umol/L (60 - 110)	LD	205	U/L	(120 - 250)
Urea/Creat.	95	(40 - 100)		87	U/L	(46 - 171)
egfr	>90	mL/min/(> 60) 1.73m ²				

Venous blood gas

ABL837 RH~RB PATIENT REPORT	Syringe – S 250uL		Sample #	16538			
Identifications							
Patient ID	SDC 240195						
Patient Last Name	HELLIER						
Patient First Name	Joel						
Sample type	Venous						
Т	35.8						
FO2(l)	1.0						
Operator	C.D. Henderson						
Blood Gas Values							
pН	7.28		[7.350 – 7.450]				
pCO2	51	mmHg	[35.0 - 45.0]				
pO2	41	mmHg	[75.0 - 100]				
cHCO3~(P)c	25	mmol/L	[21.0 – 27.0]				
cBase(B)c	-10	mmol/L	[-3.0 - 3.0]				
P50c		mmHg					
Baro.		mmHg					
Oximetry Values							
aO2		%					
ctHb	110	g/L	[105 – 135]				
Hct		%					
FO2Hb		%	[94.0 - 98.0]				
FCOHb		%	[0.0 - 1.5]				
FMetHb		%					
FHHb		%	[-]				
Electrolyte Values							
cNa+	134	mmol/L	[135 – 145]				
cK+	4.1	mmol/L					
cCl-	109	mmol/L	[100 – 110]				
cCa2+	1.12	mmol/L	[1.15-1.35]				
AnionGap,K+c		mmol/L	[-				
Metabolite Values							
cGlu	5.0	µmol/L	[3.0 – 7.8]				
cLac	4.0	µmol/L	[0.7 – 2.5]				
cCrea	72	µmol/L	[36 – 62]				
ctBll		µmol/L	[-]				
Temperature Corre	ected Values						
pH(T)							
pCO2(T)		mmHg					
pO2(T)		mmHg					

Pre-simulation briefing

Establishing a safe container for learning in simulation

Clarify objectives, roles and expectations

- Introductions
- Learning objectives
- Assessment (formative vs summative)
- Facilitators and learners' roles
- Active participants vs observers

Maintain confidentiality and respect

- Transparency on who will observe
- Individual performances
- Maintain curiosity

Establish a fiction contract

Seek a voluntary commitment between the learner and facilitator:

- Ask for buy-in
- Acknowledge limitations

Conduct a familiarisation

- Manikin/simulated patient
- Simulated environment
- Calling for help

Note: Adjust the pre-simulation briefing to match the demands of the simulation event, contexts or the changing of participant composition.

Address simulation safety

Identify risks:

- Medications and equipment
- Electrical or physical hazards
- · Simulated and real patients

V2 Effective: 1/7/2021. Adapted from Rudolph, J., Raemer, D. and Simon, R. (2014). Establishing a Safe Container for Learning in Simulation. Simulation in Healthcare; Journal of the Society for Simulation in Healthcare, 9(6), pp.339-349.

Structured trauma assessment

Primary survey

Catastrophic haemorrhage
Find and control massive external haemorrhage

Life threats: Exsanguinating external haemorrhage

Airway/C-spine

Maintain or secure airway and C-spine

Life threats: Airway obstruction, blunt/penetrating neck injury

Breathing/ventilation

Support adequate ventilation/oxygenation

Life threats:

Tension pneumothorax, massive haemothorax, open pneumothorax, flail chest, ruptured diaphragm

Circulation with haemorrhage control Assess and control bleeding. Support haemodynamics

Life threats: Cardiac tamponade, penetrating cardiac injury, intra-abdominal and pelvic trauma

Disability Rapidly assess and protect neurological status

Life threats: Catastrophic cerebral haemorrhage

Exposure

Assess for further injuries then maintain normothermia

Life threats: Hypothermia